SELEV Technical Documentation
A comprehensive guide to the autonomous brand intelligence protocol.
01Introduction
SELEV represents a paradigm shift in personal branding through the convergence of advanced neural architectures and decentralized consensus mechanisms. This documentation provides the technical foundation for understanding and implementing the SELEV protocol.
Core Philosophy
The system is built on three fundamental principles:
- Autonomous Intelligence: Self-improving neural networks that adapt to brand evolution
- Cryptographic Verifiability: Every action is provably authentic and immutable
- Economic Alignment: Token mechanics that incentivize genuine value creation
02Architecture Overview
SELEV employs a multi-layer architecture designed for horizontal scalability and fault tolerance. The system consists of five primary layers:
┌─────────────────────────────────────────────────┐ │ Application Layer (dApps) │ ├─────────────────────────────────────────────────┤ │ Consensus Layer (PoB + PBFT) │ ├─────────────────────────────────────────────────┤ │ Neural Processing Layer (GPT-X + VAE) │ ├─────────────────────────────────────────────────┤ │ Storage Layer (IPFS + Arweave) │ ├─────────────────────────────────────────────────┤ │ Network Layer (libp2p + WebRTC) │ └─────────────────────────────────────────────────┘
Layer Interactions
Each layer communicates through well-defined interfaces using Protocol Buffers for serialization. The neural processing layer operates independently of consensus, allowing for off-chain computation with on-chain verification.
03Neural Engine Architecture
The SELEV neural engine combines multiple AI architectures to create a comprehensive brand understanding system:
3.1 Transformer Stack
class BrandTransformer(nn.Module): def __init__(self, d_model=768, n_heads=12, n_layers=12): super().__init__() self.embeddings = BrandEmbedding(d_model) self.layers = nn.ModuleList([ TransformerBlock(d_model, n_heads) for _ in range(n_layers) ]) self.norm = nn.LayerNorm(d_model) def forward(self, x, mask=None): x = self.embeddings(x) for layer in self.layers: x = layer(x, mask) return self.norm(x)
3.2 Variational Autoencoder for Style Transfer
The VAE component learns a latent representation of brand voice, enabling consistent content generation across different platforms while maintaining authenticity.
04Brand Graph Theory
SELEV models personal brands as directed acyclic graphs (DAGs) where nodes represent content pieces and edges represent semantic relationships. This allows for:
- Temporal consistency tracking
- Influence propagation modeling
- Anomaly detection for brand protection
4.1 Graph Construction Algorithm
def construct_brand_graph(content_history, threshold=0.75): """ Constructs a brand graph from historical content. Args: content_history: List of ContentNode objects threshold: Similarity threshold for edge creation Returns: BrandGraph object with computed centrality metrics """ graph = BrandGraph() for i, node_a in enumerate(content_history): graph.add_node(node_a) for node_b in content_history[i+1:]: similarity = compute_semantic_similarity( node_a.embedding, node_b.embedding ) if similarity > threshold: graph.add_edge(node_a, node_b, weight=similarity) graph.compute_centrality_metrics() return graph
05Consensus Mechanism
SELEV implements a novel Proof of Brand (PoB) consensus mechanism that combines traditional PBFT with brand-specific metrics:
5.1 Proof of Brand Algorithm
Validators stake tokens and brand reputation to participate in consensus. The selection probability is determined by:
P(validator_i) = (stake_i * reputation_i^α) / Σ(stake_j * reputation_j^α) where α ∈ [0.5, 1.5] is the reputation weight parameter
5.2 Reputation Calculation
Reputation scores are computed using a modified PageRank algorithm over the brand interaction graph, with decay factors for temporal relevance.
06Tokenization Model
The SELEV token serves multiple functions within the ecosystem:
Function | Mechanism | Economic Impact |
---|---|---|
Staking | Time-locked deposits | Reduces circulating supply |
Governance | Quadratic voting | Prevents plutocracy |
Computation | Gas-like system | Creates demand pressure |
Rewards | Algorithmic distribution | Incentivizes participation |
07API Reference
The SELEV API provides programmatic access to all protocol functions. Authentication uses Ed25519 signatures with rotating nonces.
7.1 Brand Analysis Endpoint
POST /api/v1/analyze Authorization: Bearer {signature} { "content": "string", "platform": "twitter|linkedin|lens", "options": { "include_suggestions": true, "compute_similarity": true, "max_suggestions": 5 } } Response: { "brand_score": 0.875, "consistency_rating": 0.92, "suggestions": [...], "similar_content": [...], "timestamp": 1234567890 }
7.2 Content Generation
POST /api/v1/generate Authorization: Bearer {signature} { "prompt": "string", "style_vector": [0.1, 0.2, ...], // 512-dimensional "constraints": { "max_length": 280, "platform": "twitter", "tone": "professional" } }
08Smart Contract Architecture
SELEV's smart contracts are implemented in Rust for the Solana blockchain, optimized for high throughput and low latency:
#[program] pub mod selev_protocol { use super::*; pub fn initialize_brand( ctx: Context<InitializeBrand>, brand_metadata: BrandMetadata, ) -> Result<()> { let brand = &mut ctx.accounts.brand; brand.owner = ctx.accounts.owner.key(); brand.metadata = brand_metadata; brand.reputation_score = 1000; // Base reputation brand.created_at = Clock::get()?.unix_timestamp; emit!(BrandCreated { brand: brand.key(), owner: brand.owner, timestamp: brand.created_at, }); Ok(()) } }
09Performance Optimization
Several optimization techniques are employed to ensure sub-second response times:
9.1 Caching Strategy
- L1 Cache: Hot embeddings in Redis (TTL: 5 minutes)
- L2 Cache: Computed brand graphs in PostgreSQL (TTL: 1 hour)
- L3 Cache: Historical analyses in IPFS (permanent)
9.2 Neural Network Optimization
We use quantization-aware training to deploy 8-bit models without significant accuracy loss:
# Quantization configuration config = QuantizationConfig( bits=8, group_size=128, dataset="brand_calibration_set", desc_act=True # Activation order for better accuracy )
10Security Considerations
SELEV implements defense-in-depth with multiple security layers:
validate_embedding()
function before processing.
10.1 Threat Model
- Sybil Attacks: Mitigated through stake requirements and reputation scoring
- Model Poisoning: Federated learning with Byzantine-robust aggregation
- Front-running: Commit-reveal scheme for content submissions
11Scaling Strategy
SELEV is designed to scale to millions of concurrent users through:
11.1 Horizontal Scaling
# Kubernetes deployment configuration apiVersion: apps/v1 kind: Deployment metadata: name: selev-neural-engine spec: replicas: 10 selector: matchLabels: app: neural-engine template: spec: containers: - name: engine image: selev/neural-engine:latest resources: requests: memory: "8Gi" cpu: "4" nvidia.com/gpu: 1 limits: memory: "16Gi" cpu: "8" nvidia.com/gpu: 1
11.2 State Sharding
Brand data is sharded across nodes using consistent hashing with virtual nodes for even distribution. Each shard maintains 3 replicas for fault tolerance.
Last updated: Block height 15,234,567 | Commit: 0xdeadbeef